

Modeling Overview

Overview of the model

Contents:

- * Overview of the model
- * Examples of AWASH in action
- Getting involved

Model objective

Explore interactions between water, food and energy systems from a national perspective

- In response to specific types of climate changes
- In response to economic factors
 - * GDP growth rate , Global Energy prices, Global Food demand
 - * Investment climate financing, rates, private vs public action
- In response to demographic factors
 - * Migration, Age distribution, income
- * In response to property rights models water rights /others
- In response to conservation technologies
- * In response to energy policy renewables, carbon tax, biofuels
- In response to agricultural policy or diet preferences crop insurance etc

Model Elements

- * **Populations:** consume water, electricity, food
- * **Power plants**: consume water, biofuels; produce electricity
- * Agriculture: consume water, energy; produce food, biofuel
- * Water: consume energy

Design decisions

- * Modeled at a county-month scale for whole US
- Multiple networks of interactions
 - Counties to neighboring counties
 - * Other transport networks (water, electricity)
- * Treat arbitrary "resources": water, energy, products
 - * Solve for production, imports and exports, storage, prices
- * Interested in spatiotemporal optimization
 - Short-term optimization of production distribution
 - * Long-term optimization of capacity expansion
 - Multiple objective functions to consider

Basic model scale

* Monthly, 1949 – 2009, and climate futures

Flow Gauges, Reservoirs, Cross-border canals

County River Network

County Transportation Network

Electricity Grid

* County-level representation of TIGER high-voltage lines

Electricity Grid

Groundwater Network

Implementing environmental flows

- * Unmodified monthly flows from VIC
- Recommendations follow flow-duration curve

Medium tributaries	<15% change to monthly Q_{so} , to upper season	
	range monthly Q_{10} to Q_{50} , and to lower	
	seasonal range monthly Q ₅₀ to Q ₇₀ (summer-	
	fall) or monthly Q ₅₀ to Q ₇₅ (winter-spring)	
Large rivers	<20% change to seasonal flow range Q10-	
	Q50; <15% change to monthly median; <15%	
	change to Q50-Q75	
Headwaters and	No change to low flow range monthly Q ₅₀ to	
Creeks	Q ₅₉ (summer-fall) or monthly Q ₇₀ to Q ₅₉	
	(winter-spring)	
Small rivers and	No change to low flow range monthly Q ₂₀ to	
Medium tributaries	Q ₉₉ (summer-fall) or monthly Q ₈₀ to Q ₈₀	
	(winter-spring)	

An stylized model element

* A value-of-water optimization

* Maximize total producer profits, assuming fixed prices and costs, realistic water supply, and an omnipresent market.

Adding distribution and demand

 Determine the best locations for production and consumption, given demand.

An integrated modeling framework

Component-based framework (Mimi in Julia)

- * Inputs from outside the model:
- * Inputs from other components:
- * Inputs from optimization:

- * Able to validate components individually and swap them out and have multiple variants.
 - Existing Mimi components for climate, biodiversity, disease, conflict, natural disasters
- * Linear programming optimization (Gurobi)
 - * Automatic construction of LP matrices

Examples of AWASH in action

Contents:

- * Overview of the model
- * Examples of AWASH in action
- Getting involved

Current drawdown

Accounting for surface water and reservoirs

Effects of optimization

- Hold all water demands constant
- Minimize costs to satisfy demands over
 - Where to withdrawal from surface
 - Where to withdrawal from groundwater
 - When to release from reservoirs

Less GW

		source	Nation2State	State2County
	1	Surface	-0.0003828237112907648	-0.0256423807578361
	2	Ground	0.0029084220380203763	0.0865761242404009

Allocation of agriculture

Getting involved

Contents:

- * Overview of the model
- * Examples of AWASH in action
- Getting involved

Our user interface

include("../src/nui.jl")

Welcome to AWASH, the America's Water Model, version 0.7.

Documentation!

We need help!

- * Website
- * Electricity Grid
- * Brewery
- Automatic LP checking
- * Cross-state compacts
- * Biofuels
- Environmental flows